VLSI Projects 2011 available @ NCCT, (VLSI FPGA Projects Spartan FPGA Kit, Xilinx) for more details www.ncct.in, Contact - 044-28235816, 98411 93224, 93801 02891, ncctchennai@gmail.com ...... For Project Titles, Abstracts Downloads visit www.ncct.in

What is VLSI  |  Why VLSI  |  Origins of VLSI  |  VLSI History  |  VLSI Applications  |  VLSI Implementation Media  |  Moore’s Law  |  The VLSI Design Process  |  Categories of VLSI Design  |  FPGA  |  ASIC  |  FPGA-Field-Programmable Gate Array  |  FPGA vs. ASIC  |  Jobs for VLSI Engineers  | VLSI Interview Questions

Thursday, September 22, 2011

JOBS FOR VLSI ENGINEERS


JOBS FOR VLSI ENGINEERS
As mentioned above, the main job functions in this industry are Design, Product, Test, Applications and Process Engineering. For the sake of clarity, product engineering and test engineering functions are described separately, but it is most efficient to combine these two functions into one engineer because of the interdependency and overlap of skills, tasks and job functions.

1. Design Engineer:
Takes specifications, defines architecture, does circuit design, runs simulations, supervises layout, tapes out the chip to the foundry, evaluates the prototype once the chip comes back from the fab.

2. Product Engineer:
Gets involved in the project during the design phase, ensures manufacturability, develops characterization plan, assembly guidelines, develops quality and reliability plan, evaluates the chip with the design engineer, evaluates the chip through characterization, reliability qualification and manufacturing yield point of view (statistical data analysis). He is responsible for production release and is therefore regarded as a team leader on the project. Post production, he is responsible for customer returns, failure analysis, and corrective actions including design changes.

3. Test Engineer:
Develops test plan for the chip based on specifications and data sheet, creates characterization and production program for the bench test or the ATE (Automatic Test Equipment), designs test board hardware, correlates ATE results with the bench results to validate silicon to compare with simulation results. He works closely with the product engineer to ensure smooth release to production and post release support.

4. Applications Engineer:
Defines new products from system point of view at the customer’s end, based on marketing input. His mission is to ensure the chip works in the system designed or used by the customers, and complies with appropriate standards (such as Ethernet, SONET, WiFi etc.). He is responsible for all customer technical support, firmware development, evaluation boards, data sheets and all product documentation such as application notes, trade shows, magazine articles, evaluation reports, software drives and so on.

5. Process Engineer:
This is a highly specialized function which involves new wafer process development, device modeling, and lots of research and development projects. There are no quick rewards on this job! If you are R&D oriented, highly trained in semiconductor device physics area, do not mind wearing bunny suits (the clean room uniforms used in all fabs), willing to experiment, this job is for you.

6. Packaging Engineer:
This is another highly specialized job function. He develops precision packaging technology, new package designs for the chips, does the characterization of new packages, and does electrical modeling of the new designs.

7. CAD Engineer:
This is an engineering function that supports the design engineering function. He is responsible for acquiring, maintaining or developing all CAD tools used by a design engineer. Most companies buy commercially available CAD tools for schematic capture, simulation, synthesis, test vector generation, layout, parametric extraction, power estimation, and timing closure; but in several cases, these tools need some type of customization. A CAD engineer needs to be highly skilled in the use of these tools, be able to write software routines to automate as many functions as possible and have a clear understanding of the entire design flow

No comments:

Post a Comment